Platelet-rich fibrin in endodontics

Dr. Edward S. Lee discusses a tissue-engineering material with a variety of applications

Introduction

Platelet-rich fibrin (PRF) is a bioactive material made from the centrifugation of a patient’s whole blood. It is a second-generation platelet concentrate first described by Choukroun1 and is used to accelerate soft and hard tissue healing. This simplified and cost-effective chairside procedure results in a resorbable fibrin matrix enriched with platelets and leukocytes. PRF provides a rich source of growth factors, including platelet-derived growth factors (PDGFs), transforming growth factors (TGFs), vascular endothelial growth factor (VEGF), and insulin-like growth factor (IGF).2 The growth factors are slowly released during the course of the healing process.3 Because of the unique character of PRF, it is used as a tissue-engineering material with a wide range of dental applications.4,5 PRF is currently recommended as a scaffold material for regenerative endodontics.6

The following is a case study for its application in endodontics. Benefits and other applications are also discussed.

Case study

A 67-year-old female patient presented with mild discomfort and swelling around tooth No. 14. Her medical history was non-contributory. Teeth Nos. 12, 13, and 15 had been extracted more than 15 years previously and the area restored with a fixed bridge from teeth Nos. 11 to No. 14. The radiograph revealed lateral bone loss around the mesial buccal root with a 9 mm periodontal probing with probing WNL on other sites around the tooth. The patient was informed that she had a vertically fractured mesial buccal root (Figure 1). Treatment options were discussed, including extraction and replacement with implants or a removable partial denture. The patient decided to do a mesial buccal root amputation procedure and save the existing tooth and the bridge.

Venous blood was drawn from the patient’s median cubital vein and collected in three 10 ml BD Vacutainer® (BD Worldwide) tubes without anticoagulants. The blood was immediately centrifuged at 1500 RPM for 10 minutes (MyRGF-I centrifuge, Boca Dental Supply, LLC). Three layers form in the tube:

1. The lower fraction contains the RBCs.
2. The middle fraction contains the PRF clot.
3. The upper fraction contains the acellular platelet poor plasma (PPP) (Figure 2).

The middle portion containing the PRF clot was cut and removed from the RBC layer (Figure 3). The PRF clot was compressed...
to form a membrane using a membrane processing box (PRF MyRGF Box, Boca Dental Supply, LLC) (Figures 4, 5, 6). The liquid from the compressed membrane was collected and mixed with allograft bone (BoneBank Allograft, San Antonio, Texas). The collected liquid contains fibrin, which acts as a binder for the allograft bone that will be utilized and helps prevent graft migration from the intended site.

A full thickness trapezoidal flap with vertical releasing incisions mesial to No. 13 and distal to No. 14 was made. Upon reflection of the flap, a bone dehiscence over the mesial buccal root and a vertical root fracture were confirmed. A Lindemann bur was used to section the mesial buccal root at a supracrestal level, and a standard Class 1 root-end preparation was completed using ultrasonic instrumentation (ProUltra® Surgical Endo Tip, Dentsply Tulsa). The root was filled using a dentin bonding agent (Futurabond®, Voco Dental), a flowable composite (Virtuoso® Flowable, Denmat), and polished with rubber points (Figure 7). The allograft bone mixture was placed into the bony defect followed by coverage with

Because of the unique character of PRF, it is used as a tissue-engineering material with a wide range of dental applications.
PRF membranes (Figures 8 and 9). Figure 10 shows the immediate postoperative radiograph. The sutures were removed after 1 week with minimal to no pain reported by the patient after the procedure.

Figure 11 shows the 1-month healing. The area is healing with very little recession around the root amputation site. Figures 12 and 13 show the area after 7 months of healing. The bone has filled in, and the gingival architecture is excellent with no inflammation.

Discussion

Platelets play a crucial role not only in hemostasis but also in the wound-healing process. Growth factors contained within the α-granules of the platelets help regulate hard and soft tissue repair. These growth factors include platelet-derived growth factors (PDGFs), transforming growth factors (TGFs), vascular endothelial growth factor (VEGF), and insulin-like growth factor (IGF).
Further research and clinical trials are needed to understand the benefits and applications of PRF in endodontics.

Acknowledgement

The author would like to thank Dr. Calvin Tae Nam for his great help and inspiration.

REFERENCES


Figure 13: 7-month recall shows good gingival architecture. The tissues have filled in, and there is no recession around the amputated root. Full gingival contours minimize food impaction and help with daily home care.

Conclusion

Regenerative endodontics is a tissue-engineering process that requires the following three elements to succeed:

1. Scaffold
2. Growth factors
3. Stem cells

PRF provides a 100% bio-compatible, natural scaffold enriched with growth factor that can help with the proliferation and differentiation of human dental pulp cells. PRF is a more simplified technique that can help with the proliferation and differentiation of human dental pulp cells and continuously released during healing. PRF is a more simplified technique that can help with the proliferation and differentiation of human dental pulp cells.